Hao Lu

9717 Anne Marie Way Apt 376 Knoxville, TN 37931 206-327-7099 luh1@ornl.gov

POST-DOCTORAL TRAINING

Oak Ridge National Laboratory Post-doctoral research associate

Mentor: Sudip K. Seal Begin: April / 2017. Research Focus:

- Parallel spatial data structures and graph algorithms
- ♦ Lead developer of DAPPER Data Analysis Parallel Package Maker a scalable HPC spatial indexing/querying library

EDUCATION

Ph. D. in Computer Science

Washington State University, Pullman, Washington

Graduation: Dec / 2016

Dissertation Title: Scalable parallel algorithms and implementations for large-scale graph analyses.

Advisor: Dr. Ananth Kalyanaraman

Bachelor of Science in Computer Science

Washington State University, Pullman, Washington

Graduation: Dec / 2011

RECOGNITIONS

- ♦ **2017 Champion:** DARPA HIVE Graph Challenge.
- ♦ Top 5 Downloaded Article (August 2015 Present): Parallel Computing Journal, Elsevier
- ♦ 2016 Best Paper Finalist: International Conference on Compilers, Architectures and Synthesis of Embedded Systems

PEER-REVIEWED PUBLICATIONS

- ◆ Lu, Hao, Seal, Sudip, Jonathan D. Poplawsky. Scalable Proximity-Based Methods for Large-Scale Analysis of Atom Probe Data. *IEEE International Conference on High Performance Computing, Data, and Analytics* (HiPC), pp. 235-244, 2018
- ♦ Hao Lu, Sudip K. Seal, Gregory Muzyn, Wei Guo and Jonathan D. Poplawsky. Efficient, Parallel At-Scale Correlation Analysis for Atom Probe Tomography on Hybrid Architectures. *IEEE* International Parallel and Distributed Processing Symposium (IPDPS), pp. 54-63, 2018
- ♦ Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanaraman, Hao Lu, Daniel Chavarria-Miranda, Arif Khan, and Assefaw Gebremedhin. Distributed Louvain algorithm for graph community detection. *IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, pp. 885–895, 2018
- ♦ Mahantesh Halappanavar, Hao Lu, Ananth Kalyanaraman, Antonino Tumeo. Scalable static and dynamic community detection using Grappolo. Proc. IEEE high Performance Extreme Computing (HPEC'17) 2017 DARPA HIVE Graph Challenge Champion
- ◆ Hao Lu, Sudip K. Seal, Wei Guo and Jonathan D. Poplawsky. Spherical Region Queries on Multicore Architectures. Procs. Of the 7th workshop on Irregular Applications: Architectures and Algorithms (IA3'17), Supercomputing, Article 9, 2017
- ♦ Karthi Durasisamy, Hao Lu, Partha Pande, Ananth Kalyanaraman. Accelerating Graph Community Detection with Approximate Updates via an Energy-Efficient NoC. Proc. of Design Automation

- Conference (DAC), 2017
- Hao Lu, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Assefaw Gebremedhin, Ajay Panyala, Ananth Kalyanaraman. Algorithms for balanced graph colorings with applications in parallel computing. IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 28, no. 5, pp. 1240-1256, May 1 2017
- ♦ Karthi Durasisamy, **Hao Lu**, Partha Pande, Ananth Kalyanaraman. **High performance and energy efficient Network-on-Chip architectures for graph analytics.** *ACM Transactions on Embedded Computing Systems (TECS)*, 15(4), p.66, 2016
- ♦ Ananth Kalyanaraman, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Hao Lu, Karthi Duraisamy, Partha Pande. Fast uncovering of graph communities on a chip: Toward scalable community detection on multicore and manycore platforms. Foundations and Trends in Electronic Design Automation (FnTEDA), Paperback 118 pages. now Publishers, ISBN-10: 1680831321, 2016
- ♦ Karthi Duraisamy, Hao Lu, Partha Pande, Ananth Kalyanaraman. High performance and energy efficient wireless NoC-enabled multicore architecture for graph analytics. Proc. International Conference on Compilers, Architectures and Synthesis of Embedded Systems (CASES), pp. 147-156, 2015 Best Paper Finalist
- ◆ Hao Lu, Mahantesh Halappanavar, Ananth Kalyanaraman. Parallel heuristics for scalable community detection. Parallel Computing, vol. 47, pp. 19-37, 2015,
 DOI: 10.1016/j.parco.2015.03.003 Journal's Top Downloaded Article since August 2015
- ♦ **Hao Lu**, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Assefaw Gebremedhin, Ananth Kalyanaraman. **Balanced coloring for parallel computing applications.** *IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, pp. 7-16, 2015
- ♦ Hao Lu, Mahantesh Halappanavar, Ananth Kalyanaraman, Sutanay Choudhury. Parallel heuristics for scalable community detection. Proc. International Workshop on Multithreaded Architectures and Applications (MTAAP), IPDPS Workshops, pp. 1375-1385, 2014

SOFTWARE PRODUCTS

- ◆ **Grappolo:** Parallel tool for community detection in graphs for multicore platforms. Open Source website: http://hpc.pnl.gov/people/hala/grappolo.html (a more comprehensive version https://github.com/luhowardmark/GrappoloTK)
- ♦ Balanced Coloring software toolkit: Parallel toolkit to generate 1-distance and partial 2-distance colorings https://github.com/luhowardmark/GrappoloTK
- ◆ ADAPT: Parallel Data analysis toolkit for Atom Probe Tomography (A sub library for DAPPER).

PROFESSIONAL EXPERIENCE/INVOLVEMENT

•	Program Committee Member	
	International Conference on High Performance Computing (HiPC)	(2019)
	Workshop on Graphs, Architectures, Programming, and Learning (GrAPL)	(2019)
	International Conference on High Performance Computing (HiPC)	(2018)
	International Parallel and Distributed Processing Symposium (IPDPS)	(2018)
♦	Peer-Reviewer	
	International Conference on High Performance Computing (HiPC)	(2018)
	International Parallel and Distributed Processing Symposium (IPDPS)	(2018)
♦	Pacific Northwest National Lab internships	(2014, 2015)
	Working as a research assistant in high-performance group. Working under	
	Dr. Daniel Chavarria and Dr. Mahantesh Halappanavar	
♦	Visiting scholar at Purdue University	(2013)
	Working as a research assistant in Purdue University with Dr. Ananth Kalyanaraman.	
♦	WSU School of Electrical Engineering and Computer Science	
	Research assistant in high-performance computational biology lab.	(2012-2017)
	Teaching assistant in Language and Automata class.	(2011)
♦	Association of Computer Machinery (ACM)	
	Working as the vice chair in WSU chapter. In charge of tutoring sections.	(2011)
•	Rlue Water Undergraduate Peta-scale Intern	, , ,

Blue Water Undergraduate Peta-scale Intern

Working as a research assistant. Design and implementation for Suffix tree construction in parallel. Implementation in C with MPI Library.

(2010)

◆ International Conference for High Performance Computing, Networking, Storage and Analysis (SC10)

Worked as a conference student volunteer.

(2010)

PAST ACADAMIC PROJECTS

 Parallel sparse matrix LU decomposition with minimum fill-in Studied nested dissection and finding improvement

♦ Parallel Modularity based graph clustering

Design of algorithms, data structures and implementation in C++. Used MapReduce/ MPI for distribute memory model

♦ Activities recognition through smart phone sensors

Design of raw data extraction and learning algorithms, implementation in R. Used naive Bayes and Expected Maximum as the fundamental design.

• Suffix tree construction in parallel

Design of algorithms, data structures and implementation in C. Used MPI for distribute memory model

♦ Job scheduler for parallel computers

Design of algorithms, data structures and implementation in C++. Used ideas of pooling and state machines.

♦ MTX 16-bits operation systems

Design of drivers, file system, memory hierarchy, and implementation in C.

• Simplified C compiler

Re-implement the grammar of C, parse tree construction and assembly generation. Support most of the C syntax

- Code parser and call graph generator for Visual Studio environment.
- ♦ Sharepoint web tournaments

Design of matches scheduling and time scheduling algorithms and implementation of matches display. Implemented in C# under Sharepoint platform.

PROFESSIOANL MEMBERSHIPS

- ♦ ACM
- ♦ IEEE

References

References are available upon request.